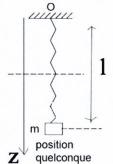
NOM:

Prénom:

Exercice 1 – Questions à choix multiple (barème indicatif 4 pts)

1. On considère un ressort de constante de raideur k et de longueur à vide l_0 (voir figure).


La force de rappel qui s'exerce sur la masse m vaut :

 $\Box \vec{T} = kz$

 $\Box \vec{T} = k(l - l_0)\vec{e}_z$

 $\Box \vec{T} = -k(l-l_0)\vec{e}_z$

Z ressort à vide

2. L'unité du travail est :

☐ le watt

□ le joule

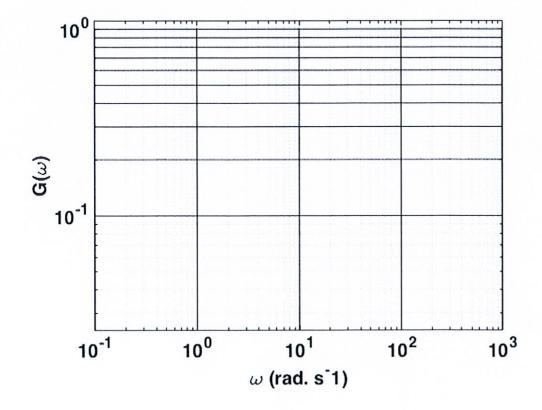
☐ le newton

3. Le poids est :

☐ une force de travail nul quel que soit le mouvement

 \square une force conservative

 \square une force non conservative

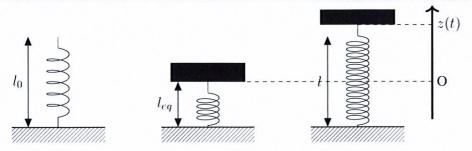

. 4. Une force de frottement est :

☐ une force de travail nul quel que soit le mouvement

 \square une force conservative

 \square une force non conservative

ANNEXE | - Exercice 3



Exercice 2 – Suspension d'une fourche de VTT (barème indicatif 8 points)

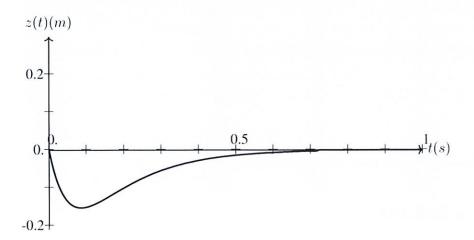
La fourche de VTT peut être modélisée par un ressort de constante de raideur k et de longueur à vide l_0 , associé à un amortisseur dont la force de frottement est $\vec{f} = -\alpha \vec{v}$. On note m la masse appuyant sur la fourche lorsque le vététiste appuie sur le guidon (par exemple en descente).

Données $m = 20.0 \,\mathrm{kg}$; $k = 2.50 \cdot 10^3 \,\mathrm{N \cdot m^{-1}}$; $\alpha = 500 \,\mathrm{N \cdot s \cdot m^{-1}}$; $l_0 = 1.30 \,\mathrm{m}$; $g = 9.81 \,\mathrm{m \cdot s^{-2}}$; $v_0 = 5.00 \,\mathrm{m \cdot s^{-1}}$.

I. Etude statique Le cycliste appuie sur le guidon, avec une masse m. Exprimer la longueur l_{eq} du ressort à l'équilibre en fonction de m, g, k et l_0 . La calculer. Le ressort est-il comprimé ou étiré?

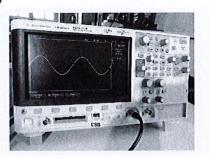
II. Etude dynamique Le vététiste se réceptionne après un dénivelé. On souhaite établir la forme du mouvement du cycliste suite à ce saut. Les conditions initiales sont z(0) = 0 et $\dot{z}(0) = -v_0$ ($\dot{z}(0) < 0$ car dirigé vers le sol).

1. Etablir l'équation différentielle vérifiée par la position verticale $z(t)=l-l_{eq}$ (voir la figure ci-dessus). La mettre sous la forme canonique


$$\ddot{z} + 2\lambda \dot{z} + \omega_0^2 z = 0$$

en exprimant λ et ω_0 .

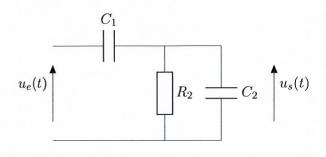
2. a) Calculer λ et ω_0 (en précisant leur unité).


b) Quelle est la nature du mouvement du vététiste (pseudo périodique, critique ou apériodique)? Calculer le temps d'amortissement caractéristique $\tau = 1/\lambda$.

3. La figure ci-dessous représente z(t). De quelle longueur s'enfonce approximativement la fourche?

Exercice 3 | - Oscilloscope numérique (barème indicatif 8 pts)

L'oscilloscope numérique est un appareil essentiel du laboratoire d'électronique. Il permet de visualiser des tensions variables au cours du temps. Il peut-être utilisé en mode DC (direct current) ou AC (alternative current). En mode AC, l'oscilloscope correspond au montage ci-dessous où $u_e(t)$ est la tension à mesurer.


La tension d'entrée est supposée sinusoïdale $u_e(t) = U_e \cos(\omega t)$.

1. Montrer que la fonction de transfert de l'oscilloscope peut se mettre sous la forme

$$\underline{H}(j\omega) = \frac{1}{1 + \frac{C_2}{C_1} - j\frac{1}{R_2C_1\omega}}$$

puis justifier, à partir des valeurs numériques données en fin d'exercice, que l'on peut faire l'approximation

$$\underline{H}(j\omega) \approx \frac{1}{1 - j\frac{1}{R_2 C_1 \omega}} \approx \frac{1}{1 - j\frac{\omega_0}{\omega}}$$

en posant $\omega_0 = 1/(R_2C_1)$. Par la suite, on utilise la forme approchée.

2. a) Exprimer le gain en tension du filtre $G(\omega)$ en fonction de ω et ω_0 . Calculer ω_0 .

b) Etablir les équations des asymptotes G_{BF} à basses fréquences ($\omega \to 0$) et G_{HF} aux hautes fréquences $(\omega \to \infty)$.

c) Tracer le gain en fonction de la pulsation - tracer aussi les asymptotes (voir annexe à rendre).

3. Quelle est la nature du filtre?

Données : $C_1 = 60.0 \cdot 10^{-9} \,\mathrm{F}$; $R_2 = 1.00 \cdot 10^6 \,\Omega$; $C_2 = 13.0 \cdot 10^{-12} \,\mathrm{F}$.