Licence 2^e année - Mention Science de la matiére

17 décembre 2024

EPREUVE:

Electromagnétisme - Phys3A

Durée : 2h00 — Documents et calculatrice non autorisés

I Magnétostatique

- 1. Ecrire le théorème d'Ampère sous sa forme (i) locale et (ii) intégrale.
- 2. Calculer le module de \overrightarrow{B} créé à une distance d par un fil infini parcouru par un courant I.

II. Propagation d'une onde dans un câble coaxial

Un câble coaxial supposé infini est parcouru par un courant sinusoïdal. Il créé une onde électromagnétique sinusoïdale monochromatique se propageant dans la direction \overrightarrow{Oz} (axe du câble). En raison de la symétrie du problème les champs électriques et magnétiques en un point M de l'espace s'écrivent dans un repère cylindrique $(O|\overrightarrow{u_r}, \overrightarrow{u_\theta}, \overrightarrow{u_z})$.

$$\overrightarrow{E}(M) = E_0(r)e^{-i(\omega t - kz)}\overrightarrow{u_r} = E_r\overrightarrow{u_r},$$

$$\overrightarrow{B}(M) = B_0(r)e^{-i(\omega t - kz)}\overrightarrow{u_\theta} = B_\theta \overrightarrow{u_\theta},$$

où les amplitudes des champs ne dépendent que de r.

- 1. Ecrire les quatre équations de Maxwell dans le vide en l'absence de charges et de courants.
- 2. Utiliser deux de ces équations afin de montrer que les amplitudes des champs peuvent s'écrire sous la forme $E_0(r) = \frac{A_1}{r}$ et $B_0(r) = \frac{A_2}{r}$, où A_1 et A_2 sont des constantes quelconques.
- 3. Déterminer l'équation de propagation portant sur le champ \overrightarrow{E} .
- 4. En remplaçant \overrightarrow{E} par son expression donnée en énoncé et compte tenu du résultat de la question 2 en déduire la relation de dispersion reliant $k \ \text{à} \ \omega$.
- 5. Calculer à partir de l'équation de Maxwell-Faraday la valeur de B_{θ} en fonction de E_r .
- 6. Calculer le vecteur de Poynting \mathcal{P} puis déterminer sa moyenne temporelle $\langle \mathcal{P} \rangle_t$ exprimée en fonction de A_1 .

N.B. On rappelle qu'en coordonnées cylindriques l'opérateur rotationnel et divergence s'écrivent :

$$\operatorname{div} \overrightarrow{X} = \frac{1}{r} \frac{\partial (rX_r)}{\partial r} + \frac{1}{r} \frac{\partial X_{\theta}}{\partial \theta} + \frac{\partial X_z}{\partial z}$$

$$\overrightarrow{\mathrm{rot}}\overrightarrow{X} = \left(\frac{1}{r}\frac{\partial X_z}{\partial \theta} - \frac{\partial X_\theta}{\partial z}\right)\overrightarrow{u_r} + \left(\frac{\partial X_r}{\partial z} - \frac{\partial X_z}{\partial r}\right)\overrightarrow{u_\theta} + \frac{1}{r}\left(\frac{\partial (rX_\theta)}{\partial r} - \frac{\partial X_r}{\partial \theta}\right)\overrightarrow{u_z}$$

Le laplacien de la composante radiale du champ \overrightarrow{f} est donné par la relation :

$$\Delta f_r = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial f_r}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 f_r}{\partial \theta^2} + \frac{\partial^2 f_r}{\partial z^2} - \frac{f_r}{r^2}$$