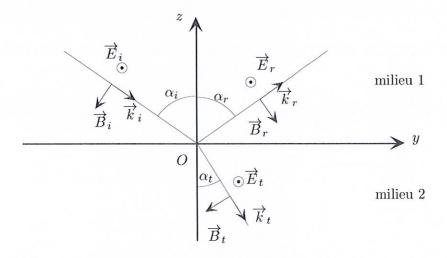
U.F.R. Sciences et Techniques

11 juin 2025

Licence 2^e année - Mention Science de la matière

EPREUVE:

Electromagnétisme - Phys3C


Durée: 1h30 — Documents et calculatrice non autorisés

On se propose de calculer les coefficients de réflexion et de transmission de l'énergie électromagnétique à la frontière entre deux milieux 1 et 2 diélectriques parfaits, linéaires, isotropes, homogènes de constante diélectrique ϵ_1 et ϵ_2 , de permittivités magnétiques μ_0 , séparés par une surface plane \mathcal{S} , non chargée.

Une onde plane électromagnétique monochromatique incidente, de pulsation ω , d'amplitude réelle \mathcal{E}_i , polarisée rectilignement, telle que :

$$\overrightarrow{E}_{i} = \mathcal{E}_{i} \exp i \left(\omega t - \overrightarrow{k}_{i} \cdot \overrightarrow{r} \right) \overrightarrow{u}_{x}$$

tombe sur \mathcal{S} (plan Oxy) avec l'incidence α_i . Elle donne naissance à l'onde réfléchie \overrightarrow{E}_r et l'onde transmise \overrightarrow{E}_t représentées sur le schéma ci-dessous.

On posera $n_1 = \sqrt{\frac{\epsilon_1}{\epsilon_0}}$ et $n_2 = \sqrt{\frac{\epsilon_2}{\epsilon_0}}$ les indices de réfraction des milieu 1 et 2 et on notera \mathcal{E}_r et \mathcal{E}_t les amplitudes réelles des champs électriques réfléchi et transmis.

- 1. Ecrire les équations de Maxwell pour un diélectrique parfait (sans charges ni courants) de permittivité magnétique μ_0 .
- 2. Quelle est la direction de polarisation des champs électriques représentés sur le schéma?
- 3. Calculer l'équation de propagation du champ incident dans le milieu d'indice n_1 .
- 4. Compte tenu de l'expression de \overrightarrow{E}_i , en déduire la relation de dispersion du milieu 1 reliant k_i à n_1 . En déduire également les relations reliant k_r à n_1 et k_t à n_2 .
- 5. En vous basant sur le schéma, déduire de la question précédente (par projection) les composantes des vecteurs d'onde d'onde \overrightarrow{k}_i , \overrightarrow{k}_r et \overrightarrow{k}_t exprimées en fonction des indices n_1 , n_2 et des angles α_i , α_r , α_t .

- 6. Ecrire l'expression des composantes des champs électriques incident, transmis et réfléchi en fonction de n_1 , n_2 et des angles α_i , α_r et α_t .
- 7. En appliquant les conditions de continuité du champ électrique \overrightarrow{E} sur la surface \mathcal{S} , retrouver les lois de Descartes. On posera $\alpha_i = \alpha_1$ et $\alpha_t = \alpha_2$. Pour ce faire, on rappelle que les termes de phase de chacune des ondes incidente, réfléchie et transmise doivent être identiques en tout point du plan \mathcal{S} . En déduire la relation simple liant \mathcal{E}_i , \mathcal{E}_r , et \mathcal{E}_t .