20 décembre 2024

U.F.R. Sciences et Techniques Licence 2^e année - Mention Science de la matière

EPREUVE:

Electromagnétisme - Phys3C

Durée: 1h30 — Documents non autorisés - Calculatrice autorisée

Transmissions sous-marines: indice complexe et profondeur de pénétration

On examine la transmission sous-marine par ondes radio de fréquence maximale 100 MHz. L'eau de mer est un milieu diélectrique linéaire, homogène et isotrope (LHI), globalement neutre ($\rho = 0$), non magnétique ($\mu = \mu_0$), rendu conducteur par la salinité. Pour les fréquences hertziennes, sa permittivité relative ($\epsilon_r = \epsilon/\epsilon_0$) et sa conductivité électrique sont celles des régimes quasi-statiques, des grandeurs réelles positives de valeur $\epsilon_r = 81$ et $\gamma = 4$ S.m⁻¹.

- 1. Donner la forme générale des équations de Maxwell en fonction des champs \overrightarrow{D} et \overrightarrow{H} dans un diélectrique LHI en présence d'une densité volumique de charges de conduction ρ et d'une densité volumique de courant de conduction \vec{j} .
- 2. Exprimer ces mêmes équations en fonction des champs \overrightarrow{E} et \overrightarrow{B} .
- 3. Ecrire ces équations dans le cas de l'eau de mer en y admettant la loi d'Ohm locale $\overrightarrow{j} = \gamma \overrightarrow{E}$.
- 4. Déduire de la question précédente l'équation de propagation de \vec{E} .
- 5. On cherche une solution sous la forme $\overrightarrow{E}(z,t) = E_0 \exp i (\omega t kz) \overrightarrow{u}_x$, avec $|\overrightarrow{u}_x| = 1$. Déduire de la question précédente la relation de dispersion de l'eau reliant k à ω . En introduisant un indice complexe n, on écrira cette relation sous la forme $k^2 = \frac{n^2 \omega^2}{c^2}$, avec c la vitesse de la lumière dans le vide. Exprimer le carré n^2 en fonction de ϵ_0 , ϵ_r , γ et ω . On rappelle l'expression $\epsilon_0 \mu_0 = 1/c^2.$
- 6. Evaluer numériquement la parte réelle et imaginaire de n^2 et montrer que l'on peut négliger la partie réelle (liée au courant de déplacement) devant la partie imaginaire (reliée au courant de conduction) pour des fréquences f < 100 MHz. On donne $\epsilon_0 = 10^{-9}/(36\pi)$ F.m⁻¹.
- 7. En déduire alors l'expression approchée de n que l'on mettra sous la forme $n=(1-i)/\alpha$, avec α une quantité réelle dont on précisera l'expression en fonction de ω , γ et ϵ_0 . On rappel que $\sqrt{-i} = \frac{\sqrt{2}(1-i)}{2}.$
- 8. Quelle est la vitesse de phase v_{ϕ} de l'onde?
- 9. Sur quelle distance δ l'onde \vec{E} se propage t-elle dans l'eau de mer avant que son amplitude soit réduite du facteur $e = \exp(1)$?
- 10. Calculer α , δ et v_{ϕ} pour f = 100 MHz.