Année 2024-2025 Jeudi 12 juin 2025

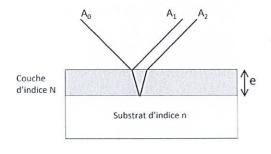
Filière: Licence 2 Maths/Physique - Physique - Physique/Chimie

Session: 2

CONTROLE TERMINAL UE Phys4A Optique instrumentale & ondulatoire Durée 2h - Sans document, sans calculatrice. Téléphones portables <u>interdits</u>. Les 2 exercices sont indépendants et peuvent être traités dans un ordre indifférent. La présentation et la rédaction de la copie seront prises en compte.

Exercice I : Etude d'une lentille boule. Durée maximale conseillée : 1h.

On considère une lentille boule formée de deux dioptres D_1 et D_2 sphériques de même centre C, de sommets respectifs S_1 et S_2 , de rayons de courbure $\overline{S_1C}=R=-\overline{S_2C}=1$ cm, d'épaisseur $\overline{S_1S_2}=2R=2$ cm, et d'indice n=3/2. Les milieux entourant la lentille boule sont l'air d'indice $n_0=1$ et l'eau d'indice $n_1=4/3$.


Ce sytème optique est représenté sur le schéma à compléter qui est à l'échelle 3 :1, c'est-à-dire 3 cm \leftrightarrow 1 cm).

On a fait figurer le point principal image H_i , ainsi que le plan principal image \mathcal{P}_i .

On donne $\overline{S_1H_i} = \frac{2R}{5} = 0.4 \text{ cm}.$

- 1. Calculez la vergence V_1 du dioptre D_1 de sommet S_1 , ainsi que la position de ses foyers image $F_i^{(1)}$ et objet $F_o^{(1)}$.
- 2. Calculez la vergence V_2 du dioptre D_2 de sommet S_2 et la position de son foyer objet $F_o^{(2)}$.
- 3. Déterminez la position du foyer objet F_o de la lentille boule, c'est-à-dire de l'ensemble D_1+D_2 .
- 4. Exprimez la vergence V de la lentille boule en fonction de R. Faites l'application numérique.
- 5. A partir des deux questions précédentes, calculez $\overline{S_1H_o}$ et montrez que $H_o=H_i$.
- 6. L'objet $\overline{A_oB_o}$ représenté sur le schéma a pour image à travers la lentille boule l'image $\overline{A_iB_i}$ également représentée. A partir de la position de cette image, et par une construction géométrique soignée, déterminez la position du foyer image F_i de la lentille. Expliquez votre démarche.
- 7. Comment pouvez-vous confirmer la position du foyer F_i trouvée précédemment?
- 8. Donnez les distances focales objet f_o et image f_i de la lentille, en fonction de R. Faites les applications numériques.
- 9. Déterminez la position des points nodaux objet N_o et image N_i . Que remarquez-vous?

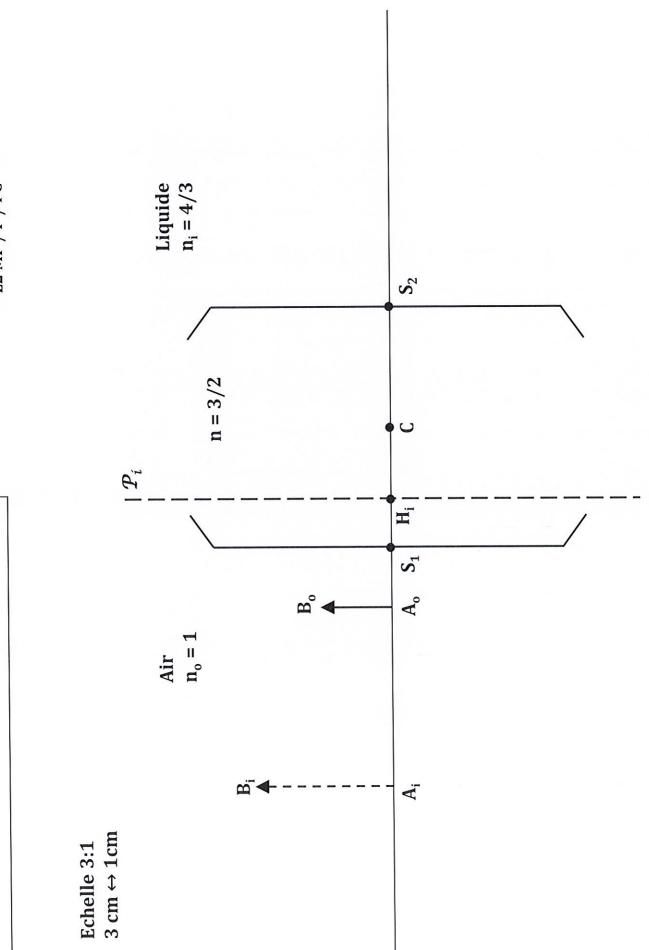
Exercice II : Interférences - Traitement anti-reflet. Durée maximale conseillée : 1h.

On dépose sur un substrat plan d'indice n=1.5 une couche mince transparente de matériau non absorbant d'indice N tel que $1 \le N \le n$, et d'épaisseur e (cf. Figure ci-contre). Ce dispositif est placé dans l'air (d'indice $n_o=1$) et est éclairé par une onde plane monochromatique de longueur d'onde dans le vide $\lambda_0=532\ nm$.

Dans toute la suite de l'exercice, on considèrera que le dispositif est éclairé en incidence normale.

On rappelle les expressions des coefficients de réflexion et de transmission en amplitude à l'incidence normale au passage entre deux milieux d'indices n_1 et n_2 :

$$r = \frac{n_1 - n_2}{n_1 + n_2} \quad ; \quad t = \frac{2n_2}{n_1 + n_2}$$


où n_1 est l'indice du milieu de l'onde incidente et n_2 l'indice du milieu de l'onde transmise.

On note A_0 l'amplitude de l'onde incidente. On ne considère que les deux premières ondes réfléchies et on note leurs amplitudes respectives A_1 (réflexion air-couche d'indice N) et A_2 (réflexion couche d'indice N-substrat d'indice n+2 transmissions).

- 1. A quelle couleur du spectre correspond la lonqueur d'onde utilisée ici?
- 2. Quelle interprétation physique pouvez-vous donner d'un coefficient de réflexion négatif?
- 3. Exprimez A_1 et A_2 en fonction de A_0 , n et N.
- 4. Calculez numériquement la quantité $\frac{4N}{(N+1)^2}$ pour les deux valeurs extrêmes N=1 et N=n. Déduisez-en que l'on commet une erreur inférieure à 5% si on remplace l'expression de A_2 trouvée précédemment par l'expression approchée suivante :

$$A_2 \approx \frac{N-n}{N+n} A_0$$

- 5. En utilisant l'approximation précédente, trouvez la relation que doivent satisfaire N et n pour que les deux amplitudes A_1 et A_2 soient égales. Calculez alors N dans ce cas.
- 6. Donnez l'expression de la différence de marche optique δ entre les deux ondes réfléchies. Déduisezen la différence de phase φ entre ces deux ondes en fonction de N, e et λ_0 .
- 7. Rappelez sans démonstration l'expression de l'intensité $I(\varphi)$ résultant de l'interférence de deux ondes de même intensité I_0 .
- 8. Déduisez-en une condition sur φ , puis sur e pour que l'intensité réfléchie résultant de la superposition des deux ondes précédentes soit nulle (interférences destructives).
- 9. Quelle est alors l'épaisseur minimale e_{min} (en fonction de λ_0 et N) de la couche anti-reflet répondant à cette condition?

