Année 2024-2025 Mercredi 7 mai 2025

Filière: Licence 2 Maths/Physique - Physique - Physique/Chimie

Session: 1

CONTROLE TERMINAL UE Phys4A Optique instrumentale & ondulatoire

Durée 2h - Sans document, sans calculatrice. Téléphones portables <u>éteints</u>.

Le sujet comporte <u>deux schémas</u> à compléter.

La présentation et la rédaction de la copie seront prises en compte.

Exercice 1 : Le microscope optique Temps maximal conseillé : $\approx 1h$

Un microscope est formé de 2 lentilles minces convergentes : un objectif de centre O_1 et de distance focale image $f_i^{(1)}$ et un oculaire de centre O_2 et de distance focale image $f_i^{(2)} = 25 \ mm$. L'intervalle optique est $\Delta = \overline{F_i^{(1)} F_o^{(2)}} = 16 \ cm$.

On observe à l'aide de ce microscope un petit objet A_oB_o situé en avant de l'objectif et perpendiculaire à l'axe optique (cf. Schéma 1). La distance minimale de vision distincte (Punctum Proximum) de l'observateur est $d_m = 25 \ cm$ (en avant de l'œil). Le microscope est réglé de façon à observer l'image définitive A_iB_i à l'infini. On supposera dans tout cet exercice que l'œil de l'observateur est emmétrope et qu'il se situe au foyer image $F_i^{(2)}$ de l'oculaire.

1. Complétez le schéma 1 (<u>attention</u>, le schéma n'est pas à l'échelle, il s'agit d'un schéma de principe) en traçant la <u>marche complète</u> à travers le microscope de 2 rayons lumineux issus du point B_o de l'objet A_oB_o , l'un émis parallèlement à l'axe optique, l'autre passant par le centre O_1 de l'objectif. Vous ferez figurer en pointillés tous les traits de construction nécessaires, et vous placerez les foyers objet $F_o^{(2)}$ et image $F_i^{(2)}$ de l'oculaire.

L'indication $\times 10$ écrite sur l'objectif est la valeur absolue du grandissement transversal γ_{obj} de l'objectif.

- 2. Etablissez l'expression de γ_{obj} en fonction de Δ et $f_i^{(1)}$, et déduisez-en la valeur de $f_i^{(1)}$.
- 3. En utilisant la formule de Newton, déterminez la distance $\overline{F_o^{(1)}A_o}$ où l'objet doit être placé pour obtenir une image à l'infini en sortie de microscope en fonction de $f_i^{(1)}$ et Δ .
- 4. Déterminez de même la distance $\overline{F_o^{(1)}A_o^*}$ où devrait être placé l'objet pour obtenir cette fois une image finale A_i située au Punctum Proximum de l'observateur.
- 5. En considérant que $\frac{(f_i^{(2)})^2}{\Delta d_m} \ll$ 1, montrez que $\overline{A_o^* A_o} \approx -\frac{\left(f_i^{(1)} f_i^{(2)}\right)^2}{d_m \Delta^2}$

Comment appelle-t-on cette distance $\overline{A_o^*A_o}$? Donnez sa valeur numérique.

6. Déterminez la vergence V du microscope en fonction de Δ , $f_i^{(1)}$ et $f_i^{(2)}$.

Le grossissement commercial G du microscope complet est donné par $G=\alpha'/\alpha_0$, où α' est l'angle sous lequel on voit l'image à l'infini d'un objet A_oB_o à travers le microscope, et α_0 l'angle sous lequel le même objet est vu à l'œil nu à la distance d_m .

- 7. Démontrez que $G=\frac{\Delta d_m}{f_i^{(1)}f_i^{(2)}}$. Faites l'application numérique.
- 8. L'observateur peut distinguer deux points lorsqu'il les voit sous un angle au moins égal à 3.10⁻⁴ rad. Quelle est la taille du plus petit objet que peut apercevoir l'observateur à travers le microscope lorsqu'il accommode à l'infini ? Faites l'application numérique.

Exercice II : Interféromètre à deux miroirs Temps maximal conseillé : ≈ 1h

On considère le dispositif interférentiel suivant (voir schéma 2 joint à compléter), composé de :

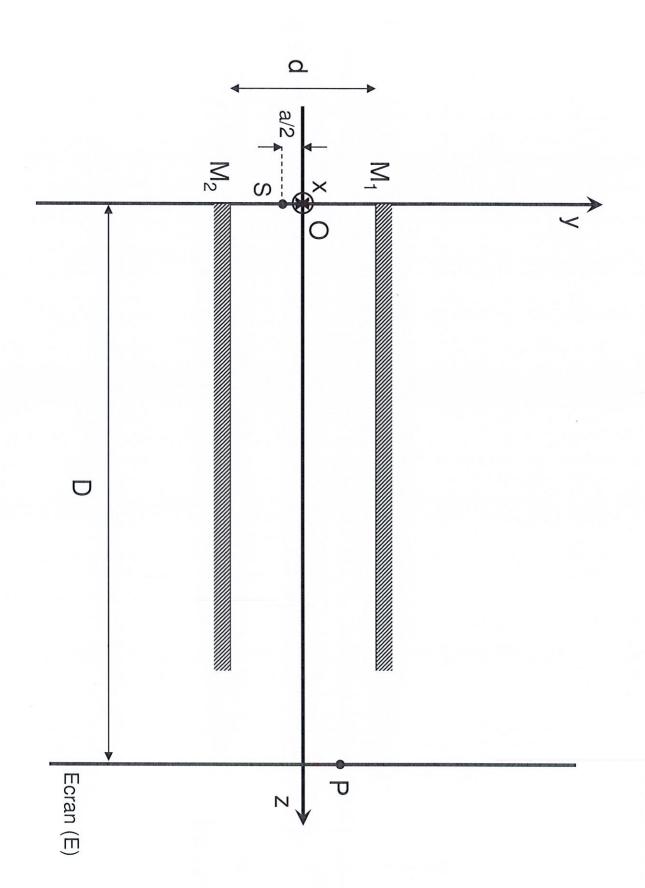
- Deux miroirs parfaits M_1 et M_2 , parallèles au plan (xOz) et situés respectivement en $y_1=d/2$ et $y_2=-d/2$
- Une source lumineuse primaire S émettant une onde de longueur d'onde $\lambda=532$ nm, située au point S de coordonnées (0,-a/2,0)
- Un écran E parallèle au plan (xOy), et situé à une distance D de S, et qui permet d'observer les interférences produites par les rayons lumineux issus des images S_1 et S_2 de S données par les miroirs M_1 et M_2 . La distance D est très grande devant toutes les autres grandeurs intervenant dans le problème : $D \gg d$ et $D \gg a$.
- Un dispositif d'écrantage (non représenté sur le schéma joint), qui permet de supprimer la lumière directe issue de S ainsi que tous les rayons lumineux ayant subi plus d'une réflexion sur les miroirs.
- 1. Quelle est la couleur de la source utilisée?
- 2. Donnez les coordonnées des deux sources secondaires générées par ce dispositif.
- 3. Représentez sur le schéma joint les 2 rayons lumineux qui, issus de S, interfèrent au point P de coordonnées (0,y,D).
- 4. Montrez que la différence de marche δ de ces 2 rayons lumineux interférant en P est

$$\delta(y, a) = \frac{2yd - ad}{D} = \frac{2d(y - a/2)}{D}$$

On donne : pour $x \ll 1$, $\sqrt{1+x} \approx 1 + \frac{1}{2}x$.

- 5. Déduisez-en l'expression du déphasage $\varphi(y,a)$ entre les deux rayons et donnez, sans démonstration, l'expression de l'éclairement $\mathcal{E}_1(y,a)$ observé au point P, en considérant que l'éclairement émis par la source S est \mathcal{E}_0 .
- 6. Quelles sont la forme et l'orientation des franges observées sur l'écran? Justifiez.
 - (a) Déterminez la position des franges brillantes. Déduisez-en l'expression de l'interfrange i. Donnez la position de la frange centrale, c'est-à-dire la frange correspondant à $\delta=0$.
 - (b) Décrivez très précisément ce que l'on observe à l'écran si :
 - on rapproche la source S du miroir M_2
 - on éloigne les deux miroirs.

On ajoute maintenant au dispositif une seconde source S', symétrique de S par rapport au plan (xOz), de même éclairement \mathcal{E}_0 et de <u>même</u> longueur d'onde λ . S et S' sont deux sources <u>incohérentes</u>.


- (c) Précisez les coordonnées de S'.
- (d) Donnez l'expression de l'éclairement \mathcal{E}_2 observé au point P due à S' <u>si elle était seule</u> (on pourra utiliser le résultat de la question I, aucun calcul n'étant a priori nécessaire)
 - (e) Les deux sources S et S' étant incohérentes, l'éclairement total $\mathcal E$ observé sur l'écran dû à ces deux sources est la somme des éclairements individuels $\mathcal E_1$ et $\mathcal E_2$. Montrez que $\mathcal E$ peut se mettre sous la forme suivante :

 $\mathcal{E} = A\mathcal{E}_0 \left[1 + V \cos \left(\frac{4\pi dy}{\lambda D} \right) \right]$

où A est une constante, et V une fonction à déterminer. On donne : $\cos p + \cos q = 2\cos\left(\frac{p+q}{2}\right)\cos\left(\frac{p-q}{2}\right)$

(f) Décrivez précisemment l'aspect de l'écran lorsque V est nul.

