Année 2024-2025 Lundi 12 mai 2025

Filière: Licence 2 Maths/Physique - Physique - Physique/Chimie

Session: 1

CONTROLE TERMINAL UE Phys4C Compléments d'optique

Durée 2h - Sans document, calculatrice autorisée. Téléphones portables <u>éteints</u>. Les 3 exercices sont indépendants et peuvent être traités dans un ordre indifférent. La présentation et la rédaction de la copie seront prises en compte.

Exercice I : Téléobjectif Temps maximal conseillé : ≈ 1h

Un téléobjectif est constitué de deux lentilles minces de même axe optique, l'une L_1 convergente de centre O_1 , de distance focale image $f_i^{(1)} = 10 \ cm$ et l'autre L_2 divergente de centre O_2 , de distance focale image $f_i^{(2)} = -4 \ cm$, et distantes de $e = \overline{O_1 O_2}$. Lorsque le téléobjectif est mis au point sur l'infini, son encombrement, c'est-à-dire la distance de la lentille L_1 au capteur CCD C est $D = 19 \ cm$.

- 1. Faites un schéma (sans respecter l'échelle).
- 2. Calculez la matrice de transfert $T(\overline{O_1O_2}) = \begin{pmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{pmatrix}$ de ce téléobjectif. Vous donnerez les coefficients T_{ij} en fonction de e, $f_i^{(1)}$ et $f_i^{(2)}$.
- 3. En considérant deux points conjugués A_o et A_i , écrivez la matrice de conjugaison $T(\overline{A_oA_i})$ de deux manières différentes et déduisez-en une relation entre $x_o = \overline{O_1A_o}$ et $x_i = \overline{O_2A_i}$ (vous donnerez par exemple x_i en fonction de x_o et des T_{ij}).
- 4. Montrez alors que e est solution de l'équation du second degré suivante :

$$e^{2} - e\left(f_{i}^{(1)} + D\right) + \left[\left(f_{i}^{(1)} + f_{i}^{(2)}\right)D - f_{i}^{(1)}f_{i}^{(2)}\right] = 0$$

- 5. Résolvez cette équation et donnez la valeur de e.
- 6. Quelles sont la vergence V et la distance focale image f_i du téléobjectif, en fonction de e, $f_i^{(1)}$ et $f_i^{(2)}$? Faites les applications numériques.
- 7. En utilisant les résultats obtenus à la question 3, <u>établissez</u> les relations donnant les positions $\overline{O_1 h_o}$ et $\overline{O_2 h_i}$ des points anti-principaux h_o et h_i . Faites les applications numériques.
- 8. Toujours en utilisant les résultats de la question 3, déterminez les positions des foyers objet F_o et image F_i en calculant les distances $\overline{O_1F_o}$ et $\overline{O_2F_i}$.
- 9. Calculez la taille sur le capteur CCD de l'image d'une tour haute de 30 $\it m$ et située à 1 $\it km$.

Exercice II : Ensemble lentille épaisse-miroir Temps maximal conseillé : ≈ 30 min On considère une lentille épaisse L dont la matrice de transfert est

$$T(\overline{ES}) = \begin{pmatrix} 1 & 0.04/3 \\ -25 & 2/3 \end{pmatrix}$$

en unités SI.

On place derrière cette lentille un miroir M, à 2 cm de la face de sortie de L, de sorte que l'ensemble forme un système centré.

- 1. On suppose dans cette question que le miroir M est un miroir plan. Calculez la matrice du système $T(\overline{EE}) = T(\overline{ME})\mathcal{R}_m(M)T(\overline{EM})$, $\mathcal{R}_m(M)$ étant la matrice du miroir (vous pourrez dans un premier temps calculer séparément $T(\overline{EM})$ et déduire simplement $T(\overline{ME})$ de cette matrice). Déduisez-en la vergence du système lentille/miroir.
- 2. On suppose maintenant que le miroir n'est pas plan, mais sphérique, de vergence V_m . Déterminez la valeur de V_m , le rayon de courbure du miroir, ainsi que sa nature (convergent ou divergent) pour que l'ensemble lentille/miroir soit afocal.

- 1. Un projecteur comporte une source de luminance uniforme L et de surface apparente s=2 cm^2 . On considère que cette source émet dans toutes les directions avec une intensité I= constante, et qu'il existe un système de réflecteurs qui renvoie toute la lumière dans la direction souhaitée. La source est placée à une distance D d'un système optique dont le facteur de transmission, défini comme étant le rapport du flux transmis par le système et du flux incident est $T=\frac{F_{trans}}{F_{inc}}=0.85$. Ce projecteur éclaire un écran de surface $S_e=16$ m^2 et l'éclairement moyen vaut $E_{moy}=680$ lux.
 - (a) Calculez le flux lumineux au niveau de l'écran.
 - (b) Déduisez-en le flux lumineux émis par la source.
 - (c) Calculez la luminance de la source.
 - (d) Calculez la puissance de la lampe, sachant que son efficacité lumineuse vaut $\eta = 32 \, lm.W^{-1}$.
- 2. Une table de travail carrée de côté $a=3\,m$ est éclairée par une lampe S supposée ponctuelle dont la projection orthogonale sur la table coïncide avec le milieu H d'un de ses côtés. L'intensité lumineuse isotrope de la lampe est $I=900\,cd$.
 - (a) Exprimez l'éclairement E_c au centre C de la table en fonction de I, de a et de l'angle $\alpha = \widehat{CSH}$.
 - (b) Calculez cet éclairement E_c pour $\alpha = 45^{\circ}$.