Acoustique et Techniques du vide 2nde session - durée 2h

Nom / prénom:	Nom	/ prénom:						
---------------	-----	-----------	--	--	--	--	--	--

Exercice 1

On souhaite calculer le niveau en dB(A) d'un signal dont les niveaux en dB par bande d'octave sont répertoriés ci-dessous :

Fréquence (Hz)	63	125	250	500	1000	2000	4000	8000
Niveau Lp (dB)	100	85	83	83	70	82	82	90
Pondération (dB)	-25	-16	-8.5	-3	0	+1	+1	-1
Niveau Lp en dB(A)		-			7			

1) Calculer pour chaque bande d'octave le niveau en dB(A) en remplissant le tableau précédent.

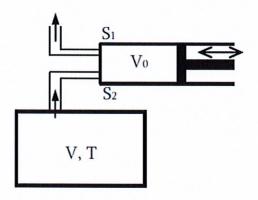
2) Calculez le niveau total L_p en dB et celui en dB(A)

Exercice 2

- a) Une machine produit un niveau sonore de 80 dB(A), quel est le niveau sonore de 2, 3 ou 4 machines ? A partir de combien de machine faudra-t-il réduire le temps de travail
- b) Une source 1 produit 90 dB(A), une source 2 produit 85 dB(A) et une source 3 produit 80 dB(A). Quel est le niveau acoustique des 3 sources ?
- c) Combien de temps un ouvrier peut-il travailler dans ces conditions?
- d) 2 machines côte à côte produisent chacune un bruit omnidirectionnel de 100 W. Calculer le niveau de pression acoustique (direct) en dB à 20 m (2 méthodes possibles). Même question si le sol est parfaitement réfléchissant.

Exercice 3

Soit un local d'émission L_1 , et un local de réception L_2 , séparés par une cloison de surface 15 m² et d'indice d'affaiblissement R égal à 43 dB. L'aire d'absorption équivalente du local de réception est de 30 m² et son temps de réverbération de 0,9 s.


1. Calculer l'isolement brut D_b théorique qui ne tiendrait compte que des transmissions par la cloison ?

On mesure un niveau de pression (réverbéré) à l'émission Lp_1 = 102 dB et à la réception Lp_2 =58 dB.

- 2. Calculer l'isolement brut D_b mesuré?
- 3. Pourquoi ne trouve-t-on pas les mêmes valeurs théoriques et mesurées ?
- 4. Quel serait le niveau acoustique en réception si l'on n'avait que des transmissions latérales?

Exercice 4

Pour faire le vide dans une enceinte, contenant de l'air et de volume V, on utilise une pompe à vide. Elle est composée d'un cylindre à l'intérieur duquel se déplace, sans frottement, un piston. Le volume maximum d'air admissible dans le corps de pompe est V_0 , lorsque le piston est tiré complètement vers la droite. Lorsqu'il est poussé complètement à gauche, le piston peut atteindre le fond du cylindre. Deux soupapes, S_1 et S_2 permettent l'admission de l'air venant de l'enceinte et son refoulement vers l'atmosphère extérieure dont la pression est P_0 . Un moteur électrique déplace le piston qui fait un aller et un retour quand le moteur a fait un tour. On assimilera l'air à un gaz parfait dont la température T reste constante lors du fonctionnement de la pompe. Au départ, la pression dans l'enceinte est $P_0 = 1$ bar. On néglige le volume du tuyau reliant la pompe à l'enceinte.

- 1. On étudie le premier aller-retour du piston. Au départ, la pression dans l'enceinte est P_0 , le piston est poussé vers la gauche. Puis, S_2 étant ouverte et S_1 fermée, il est tiré complètement vers la droite. Lors du retour du piston, S_1 est ouverte et S_2 fermée, l'air contenu dans le cylindre est refoulé vers l'extérieur. Déterminer la pression P_1 à la fin de cette opération.
- 2. En reprenant le raisonnement précédent, déterminer la pression P₂, dans l'enceinte, après le deuxième aller-retour.
- 3. En déduire la pression P_N à l'intérieur de l'enceinte au bout de N aller-retours.
- 4. La fréquence de rotation du moteur est de f=300 tours / min. Déterminer le temps t pour obtenir une pression de 0,001 bar=1 mbar.
- 5. Exprimer le débit volumique de la pompe D_{vp} en fonction de f et V₀.
- 6. En supposant $V_0 \le V$, retrouvez l'équation du pompage. Cette équation est-elle toujours valide ?
- 7. L'effet de la canalisation reliant la pompe à l'enceinte a été négligé jusqu'à présent (le débit volumique de la pompe a été considéré égal à celui dans l'enceinte). On suppose que la pompe a un débit volumique D_{vp} trouvé en question 5. La canalisation qui relie l'enceinte à la pompe présente un diamètre de 10 cm, une longueur de 0.5 m. La pression moyenne dans la canalisation en régime de fonctionnement est de 1 mbar et le gaz pompé est de l'air sec. Quelle est la conductance de la canalisation ? Quel est le débit volumique dans l'enceinte ? Conclusion.

On donne V = 10.0 L et $V_0 = 50.0 cm^3$.

<u>Rappel</u>: $1 \text{ cm}^3 = 10^{-6} \text{ m}^3 \text{ et que } 1 \text{ cm}^3 = 0.001 \text{ litres}$