Examen - 7 janvier 2025 durée : 2h

Notations. La mesure de Lebesgue sur \mathbb{R} est notée λ . La mesure de Lebesgue sur \mathbb{R}^2 est notée λ_2 . Pour alléger les notations on notera indifféremment dx à la place de $d\lambda(x)$, et dx dy à la place de $d\lambda_2(x,y)$.

Le sujet est peut-être un peu long. Le barème sera adapté. Soignez la présentation et votre rédaction. Vous rédigerez vos exercices sur deux copies séparées :

exercices 1 et 2 sur une copie, exercices 3 et 4 sur une autre.

Citez les théorèmes du cours utilisés, en justifiant les hypothèses.

EXERCICE 1. Soit (X, \mathcal{M}) un espace mesurable. Soient μ et ν deux mesures sur (X, \mathcal{M}) . On rappelle que ν est absolument continue par rapport à μ si :

$$\forall A \in \mathscr{M} \quad (\mu(A) = 0) \implies (\nu(A) = 0).$$

- 1. On suppose dans cette question que ν est une mesure de densité f par rapport à μ (noté $\nu = f\mu$).
 - (a) Rappeler la définition de « ν est de densité f par rapport à μ ».
 - (b) Montrer que ν est absolument continue par rapport à μ .
- 2. On suppose dans cette question que:

(*)
$$\forall \varepsilon > 0 \quad \exists \eta > 0 \quad \forall A \in \mathcal{M} \quad (\mu(A) < \eta) \implies (\nu(A) < \varepsilon).$$

Montrer que ν est absolument continue par rapport à μ .

- 3. On suppose dans cette question que (*) n'est pas satisfaite. En particulier, il existe $\varepsilon > 0$ et une suite $(A_n)_{n \in \mathbb{N}}$ de \mathscr{M} tels que pour chaque $n \in \mathbb{N}$, $\mu(A_n) \leq \frac{1}{2^n}$ et $\nu(A_n) \geq \varepsilon$. On pose $B_k = \bigcup_{n \geq k} A_n$ et $B = \bigcap_{k \in \mathbb{N}} B_k$ (autrement dit $B = \limsup_{n \in \mathbb{N}} A_n$).
 - (a) En justifiant au moyen de propriétés vues en cours :
 - i. donner une majoration de $\mu(B_k)$ pour tout $k \in \mathbb{N}$ puis montrer que $\mu(B) = 0$;
 - ii. montrer que si ν est une mesure finie alors $\nu(B) \geq \varepsilon$.
 - (b) En déduire que la réciproque de la question 2 est vraie si ν est une mesure finie.
- 4. On considère X =]0,1], \mathcal{M} la tribu des boréliens de]0,1], μ la mesure de Lebesgue sur]0,1] et ν la mesure de densité $f: x \mapsto \frac{1}{x}$ par rapport à μ .
 - (a) Calculer $\nu([a,b])$ pour $0 < a \le b \le 1$.
 - (b) Justifier que ν n'est pas une mesure finie, mais qu'elle est σ -finie.
 - (c) Donner un exemple d'une suite $(A_n)_{n\in\mathbb{N}}$ de \mathscr{M} telle que pour chaque $n\in\mathbb{N}$, $\mu(A_n)\leq \frac{1}{2^n}$ et $\nu(A_n)\geq 1$.

EXERCICE 2. Pour $n \in \mathbb{N}$, soient f_n la fonction définie pour tout x > 0 par $f_n(x) = \frac{1}{\sqrt{x} + x^{n+2}}$ et $I_n = \int_{[0,+\infty[} f_n(x) dx$.

- 1. Expliciter la fonction f définie pour tout x > 0 par $f(x) = \lim_{n \to +\infty} f_n(x)$.
- 2. Prouver que pour tout $n \in \mathbb{N}$ la fonction f_n est intégrable sur $]0, +\infty[$ et déterminer $\lim_{n \to +\infty} I_n$. Citer le théorème du cours utilisé.

Changez de copie!

EXERCICE 3. Soit f la fonction définie sur $\mathbb{R}_+^* \times \mathbb{R}$ par $f(x,t) = \frac{\sin(tx)}{x} e^{-x}$. On pose $F(t) = \int_{[0,+\infty]} f(x,t) dx$.

- 1. Montrer que pour tout $t \in \mathbb{R}$, $x \mapsto f(x,t)$ est intégrable sur $]0,+\infty[$ et que $t \mapsto F(t)$ est continue sur \mathbb{R} .
- 2. Montrer que F de classe C^1 sur \mathbb{R} et calculer F'(t).
- 3. En déduire une expression simplifiée de F(t).

EXERCICE 4. On note : $T = \{(x,y) \in \mathbb{R}^2 : 0 < y < x < 1\}$ et $\Delta = \{(\theta,\varphi) \in \mathbb{R}^2 : 0 < \varphi < \theta < \frac{\pi}{2} - 2\varphi\}$

- 1. Représenter T sur un premier graphique et Δ sur un second.
- 2. Soit $f: T \to \mathbb{R}_+$ définie par $f(x,y) = \frac{1}{1-xy}$ pour $(x,y) \in T$. On pose $: I = \int_T f(x,y) \, \mathrm{d}x \, \mathrm{d}y$.
 - (a) Pourquoi f est-elle mesurable sur T?
 - (b) En utilisant un développement en série et un théorème du cours, montrer que $I = \frac{1}{2} \sum_{n \in \mathbb{N}^*} \frac{1}{n^2}$.
- 3. On considère l'application $H:\Delta\to\mathbb{R}^2,\, (\theta,\varphi)\mapsto (x,y)=H(\theta,\varphi)$ définie par :

$$\begin{cases} x = \sin \theta + \cos \theta \tan \varphi \\ y = \sin \theta - \cos \theta \tan \varphi \end{cases}$$

On admet que $H(\Delta) = T$ et que H est un difféomorphisme de Δ sur T. Calculer le jacobien de H.

- 4. En utilisant le difféomorphisme H, calculer la valeur de $I = \int_T \frac{1}{1 xy} dx dy$.
- 5. En déduire la valeur de $\zeta(2) = \sum_{n \in \mathbb{N}^*} \frac{1}{n^2}$.