

Examen du 19 mai 2025 - durée 3h

Exercice 1. Soit K un corps (commutatif), $n \ge 2$ un entier et considérons $G = GL_n(\mathbb{K})$, $H = SL_n(\mathbb{K})$. Soit $((E_{i,j}) | (i,j) \in [1,n]^2)$ la base canonique de $M_n(\mathbb{K})$.

Une matrice de transvection élémentaire est $T_{i,j}(a) = \mathbb{1}_n + aE_{i,j}$ et une matrice de dilatation élémentaire est $D_i(a) = \mathbb{1}_n + (a-1)E_{i,i}$, avec $i \neq j \in [1,n]$ et $a \in \mathbb{K}^*$.

- 1. On veut montrer que G est engendré par les matrices de dilatation et de transvection élémentaires, puis que H est engendré par les matrices de transvection élémentaires.
 - (a) Quel est l'effet du produit à gauche (resp. à droite) de $T_{ij}(a)$ sur une matrice $A \in M_n(\mathbb{K})$? Quel est l'effet du produit à gauche (resp. à droite) de $T_{ij}(1)T_{ji}(-1)T_{ij}(1)$ sur une matrice $A \in M_n(\mathbb{K})$?
 - (b) On suppose dans cette question que n=2. Montrer que pour toute matrice A de $\mathrm{GL}_2(\mathbb{K})$ il existe des matrices de transvections élémentaires L_1, L_2, \ldots, L_p et R_1, R_2, \ldots, R_q telles que

$$L_p \cdots L_1 A R_1 \cdots R_q = \begin{pmatrix} 1 & 0 \\ 0 & \alpha \end{pmatrix}, \quad \text{avec } \alpha \in \mathbb{K}^*.$$

En déduire que $SL_2(\mathbb{K})$ est engendré par les matrices de transvection élémentaires et que $GL_2(\mathbb{K})$ est engendré par les matrices de transvection et de dilatation élémentaires.

(c) On suppose $n \geq 2$. Montrer que pour toute matrice A de $\mathrm{GL}_n(\mathbb{K})$ il existe des matrices de transvections élémentaires L_1, L_2, \ldots, L_p et R_1, R_2, \ldots, R_q telles que

$$L_p \cdots L_1 A R_1 \cdots R_q = \begin{pmatrix} 1 & 0 \\ 0 & A' \end{pmatrix}$$
 avec $A' \in GL_{n-1}(\mathbb{K})$

- (d) En déduire par récurrence que $SL_n(\mathbb{K})$ est engendré par les matrices de transvection élémentaires et que $GL_n(\mathbb{K})$ est engendré par les matrices de transvection et de dilatation élémentaires.
- 2. Montrer que les centres Z(H) et Z(G) sont constitués de matrices scalaires, i.e. de la forme $\lambda \mathbb{1}_n$, $\lambda \in \mathbb{K}$.
- 3. Donner le cardinal de Z(H) si $\mathbb{K} = \mathbb{C}$ ou $\mathbb{K} = \mathbb{R}$.
- 4. Rappeler la définition de sous groupe dérivé d'un groupe.
- 5. On note G', H' les sous groupes dérivés de G et de H.
 - (a) Montrer que $G' \subset H$.
 - (b) Supposons $n \ge 3$ et soit $i, j, k \in [1, n]$ distincts. Calculer le commutateur de $T_{i,k}(1)$ et $T_{k,j}(1)$.
 - (c) En déduire que G' = H et H' = H.
- 6. Soit p un nombre premier et soit $\mathbb{K} = \mathbb{Z}/p\mathbb{Z}$.
 - (a) Calculer le cardinal de $GL_n(\mathbb{K})$.
 - (b) Donner la définition de p-sous groupe de Sylow d'un groupe fini.
 - (c) Trouver un p-sous groupe de Sylow P de $GL_n(\mathbb{K})$. Est-ce que P est normal dans G?

Exercice 2. Soit $n \ge 3$. On admet que \mathfrak{A}_n est simple pour $n \ne 4$. Soit H un sous groupe de \mathfrak{S}_n , d'indice n. On souhaite montrer que H est isomorphe à \mathfrak{S}_{n-1} . Posons $e = \mathrm{id}_{\llbracket 1,n \rrbracket}$.

- 1. Vérifier l'énoncé si n = 3.
- 2. Montrer qu'un groupe de cardinal 6 est cyclique ou isomorphe à \mathfrak{S}_3 . En déduire l'énoncé si n=4.
- 3. Supposons $n \ge 5$ et soit $N \ne \{e\}$ un sous groupe normal de \mathfrak{S}_n .
 - (a) Montrer que $N_0 = \mathfrak{A}_n \cap N$ est un sous groupe normal de \mathfrak{A}_n .
 - (b) Argumenter que N_0 ne peut pas être réduit à l'identité $\{e\}$.
 - (c) Déduire que $N_0=\mathfrak{A}_n$ puis que $N=\mathfrak{A}_n$ ou $N=\mathfrak{S}_n.$
- 4. On suppose à nouveau que $n \ge 5$. On rappelle que H est un sous groupe d'indice n de \mathfrak{S}_n . On pose $X = \mathfrak{S}_n/H = \{\sigma H \mid \sigma \in \mathfrak{S}_n\}$ et on définit un morphisme $\rho : \mathfrak{S}_n \to \mathfrak{S}(X)$ en faisant opérer \mathfrak{S}_n sur X par $\rho(\tau)(\sigma H) = (\tau \sigma)H$, pour tout $\sigma, \tau \in \mathfrak{S}_n$.
 - (a) Décrire le noyau de ρ en terme de conjugués de H puis montrer que ρ est injectif.
 - (b) Déterminer le cardinal de $\mathfrak{S}(X)$ puis montrer que ρ est un isomorphisme.
 - (c) On note $S = \{ \varphi \in \mathfrak{S}(X) \mid \varphi(eH) = eH \}$. Montrer que $\rho(H) \subset S$.
 - (d) Justifier que S est un sous groupe de $\mathfrak{S}(X)$ isomorphe à \mathfrak{S}_{n-1} puis conclure $H \simeq \mathfrak{S}_{n-1}$.

Exercice 3. Soit G un groupe, X, Y deux ensembles et $\phi : G \times X \to X$, $\psi : G \times Y \to Y$ des opérations (à gauche) de G sur X et Y. Pour tout $g \in G$, $x \in X$ et $y \in Y$, on notera $\phi(g,x) = g \cdot x$ et $\psi(g,y) = g \cdot y$. Notons $F = Y^X$, l'ensemble des applications $f : X \to Y$.

- 1. Pour tout $f \in F$ et $g \in G$, définissons $g \bullet f$ par $(g \bullet f)(x) = g \cdot f(g^{-1} \cdot x)$, pour tout $x \in X$. Montrer que ceci définit une action (à gauche) de G sur F.
- 2. Soit $f \in F$ et supposons que f est G-invariante, i.e., pour tout $g \in G$, on a $g \bullet f = f$. Soit \mathcal{O} une G-orbite dans X. Montrer que $f(\mathcal{O})$ est une G-orbite dans Y.
- 3. Soit $X=Y=\mathbb{R}^2$. Identifions \mathbb{R}^2 à \mathbb{C} au moyen de la bijection $\alpha:\mathbb{R}^2\to\mathbb{C}$ définie par $\alpha(x,y)=x+iy$.
 - (a) Soit $G = \{1, i, -1, -i\}$. Poser $i \cdot (x, y) = (-y, x)$ puis en déduire que G opère à gauche sur \mathbb{R}^2 .
 - (b) Décrire les orbites et les points fixes de cette action.
 - (c) Soit $f \in F$ et supposons que f est \mathbb{R} -linéaire. Montrer, en identifiant X et Y à \mathbb{C} via α , que f est \mathbb{C} -linéaire si et seulement si f est G-invariante.
- 4. Soit X = Y = [1,3] et $G = \mathfrak{S}_3$, opérant par bijections sur Y et trivialement sur X. Donc par exemple, si $f \in F$ satisfait f(1) = f(2) = 1 et f(3) = 2, pour $g = (132) \in G$, on a que $h = g \bullet f$ satisfait h(1) = h(2) = 3 et h(3) = 1.
 - (a) Quel est le cardinal de F?
 - (b) Décrire les G-orbites de l'action de G sur F. Combien d'orbites cela fait-il? Préciser leur cardinal.
 - (c) Vérifier la formule de Burnside pour l'action de G sur F.