Licence de Mathématiques

2024-2025

Intitulé de l'enseignement : Théorie des Probabilités

Année: L3

Date: 19 Juin 2025

Examen 2ème session

La rédaction et la justification de vos réponses seront prises en compte dans la note. Les documents, téléphones, montres connectées et calculatrices sont interdits.

Exercice 1 : Soit $n \in \mathbb{N}^*$ et X_1, \dots, X_n des variables aléatoires indépendantes, respectivement de loi de Poisson $\mathcal{P}(\lambda_1), \dots, \mathcal{P}(\lambda_n)$ où les paramètres $\lambda_1, \dots, \lambda_n$ sont strictement positifs. Soit X une variable aléatoire de loi de Poisson de paramètre $\lambda > 0$ et φ_{λ} sa fonction caractéristique.

- \triangleright 1) Montrer que $\mathbb{E}[X] = \lambda$ et $\mathbb{V}[X] = \lambda$.
- ightharpoonup Montrer que pour tout $t \in \mathbb{R}$, $\varphi_{\lambda}(t) = e^{\lambda(e^{it}-1)}$.
- $\gt 3$) En déduire que $X_1 + \cdots + X_n$ suit une loi de Poisson $\mathcal{P}(\lambda_1 + \cdots + \lambda_n)$.
- \triangleright 4) Soit S_n une variable aléatoire de loi de Poisson de paramètre n. Montrer qu'on a la convergence en loi suivante vers une loi normale centrée réduite :

$$\frac{S_n - n}{\sqrt{n}} \xrightarrow[n \to \infty]{\mathcal{L}} \mathcal{N}(0, 1).$$

<u>Exercice</u> 2 : Soit n un entier naturel. On considère une variable aléatoire X de loi exponentielle de paramètre 1 et Y une loi binomiale $\mathcal{B}(n,\frac{1}{2})$. On suppose que X et Y sont indépendantes. Montrer que $Z=\frac{X}{Y+1}$ est une variable à densité par rapport à la mesure de Lebesgue et déterminer sa densité.

Exercice 3 : Soit X une variable aléatoire telle que X et 2X admettent la même fonction de répartition. Déterminer F. Que peut-on dire de X?

Exercice 4 : Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires indépendantes et identiquement distribuées, de loi de Bernoulli de paramètre p. Soit Y_n une variable aléatoire telle que $Y_n=0$ si $X_n=X_{n+1}$ et $Y_n=1$ si $X_n\neq X_{n+1}$. Posons $S_n=Y_1+\ldots+Y_n$.

- \triangleright 1) Calculer la moyenne et la variance de S_n .
- \triangleright 2) Montrer que $\frac{S_n}{n}$ converge dans L^2 vers 2p(1-p).
- ▷ 3) Etudier la convergence presque-sûre.

Exercice 5 : Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires indépendantes telles que pour tout $n\geq 1$,

$$\mathbb{P}(X_n = \sqrt{n}) = \mathbb{P}(X_n = -\sqrt{n}) = \frac{1}{2}.$$

On pose $S_n = X_1 + \cdots + X_n$.

- \triangleright 1) Montrer que $(S_n/n^{3/2})$ converge en probabilités vers 0.
- \triangleright 2) Montrer que (S_{n^2}/n^3) converge presque sûrement vers 0.

<u>Exercice</u> 6 : Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires indépendantes telle que

$$\mathbb{P}(X_n = -n) = \mathbb{P}(X_n = n) = \frac{1}{2n^2}$$
 et $\mathbb{P}(X_n = 0) = 1 - \frac{1}{n^2}$.

- \triangleright 1) La suite $(X_n)_{n\geq 1}$ satisfait-elle la loi forte des grands nombres?
- \triangleright 2) Que dire du comportement asymptotique de (X_n) ?