Licence de Mathématiques

2024-2025

Intitulé de l'enseignement: Théorie des Probabilités

Année: L3

Date: 21 Mai 2025

Examen: Contrôle terminal

La rédaction et la justification de vos réponses seront prises en compte dans la note. Les documents, téléphones, montres connectées et calculatrices sont interdits.

Problème 1 (Marche aléatoire dans un jeu vidéo): On désire mettre au point un jeu vidéo dans lequel un joueur traverse successivement plusieurs salles d'un château. Lorsqu'il entre dans une salle, celle-ci peut être vide, sinon le joueur y rencontre des monstres qu'il doit affronter et vaincre avant de passer à la salle suivante. La partie s'arrête lorsque le joueur traverse successivement deux salles vides. On admet que le joueur réussit toujours à vaincre les monstres rencontrés. Le jeu prévoit un nombre éventuellement illimité de salles et le joueur commence la partie dans la salle numéro 1.

On note M_i l'événement : "le joueur rencontre des monstres dans la salle numéro i". On admet que les événements M_i sont indépendants et qu'il existe $p \in]0,1[$ tel que pour tout $i \geq 1$ $\mathbb{P}(M_i)=p$.

Soit enfin X la variable aléatoire réelle égale au nombre de salles à traverser pour finir la partie.

- ▷ 1) Question préliminaire : pour $x \in]-1,1[$, rappeler la valeur de la somme $S(x)=\sum_{n\geq 0}x^n$. Prouver ensuite la convergence et donner la valeur de la somme $T(x)=\sum_{n\geq 2}nx^n$.
- \triangleright 2) Décrire à l'aide des événements M_i les évènements (X=2), (X=3), (X=4) et en déduire leur probabilité.
- \triangleright 3) Pour $n \ge 2$, on note $q_n = \mathbb{P}(X = n)$. On suppose désormais que p = 1/3.
 - (a) Vérifier que, pour $n \ge 4$, on a $q_n = \frac{1}{3}q_{n-1} + \frac{2}{9}q_{n-2}$.
 - (b) En déduire la valeur de q_n pour $n \geq 2$.
 - (c) Calculer $\mathbb{E}(X)$.

Exercice 1 : Soit (X_n) une suite de variables aléatoires réelles définies sur (Ω, \mathcal{A}, P) convergeant en probabilité vers X. Soit Y une variable aléatoire définie sur (Ω, \mathcal{A}, P) .

 \triangleright 1) Soit $\varepsilon > 0$. Démontrer qu'il existe $n_0 \in \mathbb{N}$ et M > 0 tel que

$$\forall n \ge n_0, \ P(|X_n| \ge M) + P(|X| \ge M) + P(|Y| \ge M) \le \varepsilon.$$

- \triangleright 2) Démontrer que YX_n converge en probabilité vers YX.
- \triangleright 3) Soit $f: \mathbb{R} \to \mathbb{R}$ uniformément continue. Démontrer que $(f(X_n))$ converge en probabilité vers f(X).
- \triangleright 4) Soit $f: \mathbb{R} \to \mathbb{R}$ continue. Démontrer que $(f(X_n))$ converge en probabilité vers f(X).

<u>Exercice</u> 2 : Soit $(U_n)_{n\geq 0}$ une suite de variables indépendantes et de loi uniforme sur $\mathcal{U}(0,1)$. Étudier la convergence en loi de $Y_n = n \min(U_1, \dots, U_n)$.

Exercice 3 : Soit (X_n) une suite de variables aléatoires indépendantes définies sur (Ω, \mathcal{A}, P) , suivant une lo uniforme sur [0,1]. On pose, pour tout $j \geq 1$, $Z_j = X_j X_{j+1}$.

- $\triangleright 1$) Calculer $Var(Z_j)$ et $Cov(Z_j, Z_{j+i})$ pour $i \ge 1$.
- ▷ 2) En déduire que

$$\frac{1}{n} \sum_{j=1}^{n} Z_j \xrightarrow[n \to +\infty]{L^2(\Omega)} \frac{1}{4}.$$

- \triangleright 3) Les variables aléatoires $(Z_j)_{j\geq 1}$ sont-elles indépendantes? Et les variables $(Z_{2n})_{n\geq 1}$?
- ▶ 4) Montrer que

$$\frac{1}{n} \sum_{j=1}^{n} Z_j \xrightarrow[n \to +\infty]{ps} \frac{1}{4}.$$

Problème 2 (la collectionneuse): Combien vous faudra-t-il acheter de paquets de vos céréales préférées pour pouvoir enfin compléter la collection d'images? Chaque paquet de céréales contient une image permettant de reconstituer une grande carte. La collection comporte N=250 images. Nous supposons que la marque de céréales a mis en circulation le même nombre de chacune des images qui constituent la collection, la proportion d'images en circulation représentant une image donnée est donc de 1/250. On appelle T_N la variable aléatoire égale au nombre de paquets à acheter pour terminer la collection et Y_i le nombre de paquets nécessaires à l'obtention de la $i^{\text{ème}}$ image nouvelle sachant que l'on possède déjà i-1 images distinctes. Il est clair que $T_N = Y_1 + \ldots + Y_N$,

- \triangleright 1) Quelle est la loi de Y_i ? Que vaut $\mathbb{E}[Y_i]$?
- \triangleright **2**) Montrer que $\mathbb{P}(T_N > t) \le t^{-1} N \sum_{k=1}^N \frac{1}{k}$.
- \triangleright 3) Montrer que la suite $\left(\frac{T_N}{N^3}\right)$ converge presque sûrement vers 0.
- \triangleright 4) Calculer la fonction caractéristique de T_N .
- \triangleright 5) On pose $Z_N = \frac{T_N \mathbb{E}[T_N]}{N}$. Montrer que la fonction caractéristique de (Z_N) converge quand $N \to \infty$.