Examen de Topologie

Aucun document et aucun appareil électronique (téléphone inclus) n'est autorisé.

Durée: 3 heures

Question de cours 1. Soit (E, d) un espace métrique.

- (1) Donner les définitions de partie ouverte et de partie fermée de E.
- (2) Montrer qu'une intersection finie d'ouverts de E est un ouvert de E.
- (3) Montrer qu'une réunion quelconque d'ouverts de E est un ouvert de E.
- (4) Montrer qu'une intersection quelconque d'ouverts de E n'est pas nécessairement un ouvert de E.
- (5) Montrer qu'une intersection de fermés de E est un fermé de E.

Question de cours 2. Soient $((E_i, d_i))_{1 \le i \le n}$ une famille finie d'espaces métriques et $E = E_1 \times \cdots \times E_n$.

- (1) Soient (F, d_F) un espace métrique et $f: F \to E$ une application. Pour tout $i \in \{1, \ldots, n\}$ on pose $f_i = \pi_i \circ f: F \to E_i$, où $\pi_i: E \to E_i$ est la projection sur la *i*-ème composante. Montrer que f est continue si et seulement si $f_i = \pi_i \circ f: F \to E_i$ est continue pour tout $i \in \{1, \ldots, n\}$.
- (2) Soit $(x(k))_{k\in\mathbb{N}}$ une suite dans E. Pour tout $i\in\{1,\ldots,n\}$ on définit la suite $(x_i(k))_{k\in\mathbb{N}}$ dans E_i en posant $x_i(k)=\pi_i(x(k))$. Soit $a=(a_1,\ldots,a_n)\in E$. Montrer que $(x(k))_{k\in\mathbb{N}}$ converge vers a si et seulement si pour tout $i\in\{1,\ldots,n\}$ la suite $(x_i(k))_{k\in\mathbb{N}}$ converge vers a_i .

Question de cours 3.

- (1) Soient $a, b \in \mathbb{R}$ avec $a \leq b$. Montrer que [a, b] est une partie compacte de \mathbb{R} .
- (2) Montrer que \mathbb{R} n'est pas compact.

Exercice 1. Soit (E, || ||) un espace vectoriel normé et V un sous-espace vectoriel de E.

- (1) Démontrer que \bar{V} est un sous-espace vectoriel de E.
- (2) Démontrer que, si $\mathring{V} \neq \emptyset$, alors V = E.
- (3) Soit H un hyperplan de E, c'est-à-dire le noyau d'une forme linéaire. Montrer que H est ou bien fermé, ou bien dense dans E.

Exercice 2. On considère les deux normes $\| \|_2$ et $\| \|_{\infty}$ sur $E = \mathbb{R}^2$ définies par

$$\|(x,y)\|_2 = \sqrt{x^2 + y^2}, \ \|(x,y)\|_{\infty} = \max(|x|,|y|),$$

et on munit E de la métrique $d = d_2$ induite par $\| \|_2$.

(1) Montrer que les deux normes $\| \|_2$ et $\| \|_{\infty}$ sont équivalentes. En déduire que l'application $\mathbb{R}^2 \to \mathbb{R}, \ u \mapsto \|u\|_{\infty}$, est uniformément continue.

Soit $\varphi: \mathbb{R}^2 \to \mathbb{R}^2$ l'application définie par

$$\varphi(u) = \begin{cases} (0,0) & \text{si } u = (0,0), \\ \frac{\|u\|_{\infty}}{\|u\|_{2}} u & \text{si } u \neq (0,0). \end{cases}$$

- (2) Démontrer que φ est bijective en exhibant son inverse.
- (3) Démontrer que φ et φ^{-1} sont continues en (0,0).
- (4) On admet que φ et φ^{-1} sont continues en tout point de $\mathbb{R}^2 \setminus \{(0,0)\}$. Démontrer que la partie $A = \{u \in \mathbb{R}^2 \mid ||u||_{\infty} \leq 1\}$ de \mathbb{R}^2 , munie de la métrique induite, est homéomorphe à la boule unité $B(0,1) = \{u \in \mathbb{R}^2 \mid ||u||_2 \leq 1\}$.

Exercice 3.

- (1) Soit d la distance sur \mathbb{R} définie par $d(x,y)=|x^3-y^3|$. Démontrer que (\mathbb{R},d) est complet.
- (2) Soit d la distance sur \mathbb{R} définie par $d(x,y)=|e^x-e^y|$. Démontrer que (\mathbb{R},d) n'est pas complet.