Contrôle Terminal de Topologie

Aucun document et aucun appareil électronique (téléphone inclus) n'est autorisé.

Durée: 3 heures

Question de cours 1. Rappelons que, si (E,d) est un espace métrique, alors on note $\mathcal{U}(E,d)$ l'ensemble des ouverts de E et $\mathcal{F}(E,d)$ l'ensemble de ses fermés. Soient (E,d_E) et (F,d_F) deux espaces métriques et $f:E\to F$ une application. Montrer que les conditions suivantes sont équivalentes.

- (a) L'application f est continue sur E.
- (b) Pour tout $V \in \mathcal{U}(F, d_F)$, $f^{-1}(V) \in \mathcal{U}(E, d_E)$.
- (c) Pour tout $B \in \mathcal{F}(F, d_F)$, $f^{-1}(B) \in \mathcal{F}(E, d_E)$.

Question de cours 2.

- (1) Donner la définition de application contractante.
- (2) Soient (E, d) un espace métrique et $f: E \to E$ une application contractante. Montrer que f admet au plus un point fixe.
- (3) Soient (E,d) un espace métrique complet et $f: E \to E$ une application contractante. Soient $x_0 \in E$ quelconque. Pour $n \in \mathbb{N}$ on définit $x_n \in E$ par récurrence en posant $x_{n+1} = f(x_n)$. Montrer que $(x_n)_{n \in \mathbb{N}}$ est une suite de Cauchy et que $\lim_{n \to \infty} x_n$ est un point fixe de f.

Question de cours 3. Soit (E, d) un espace métrique. On admet que les conditions suivantes sont équivalentes.

- (i) E est un espace compact.
- (ii) Toute suite de E a une sous-suite extraite convergente.
- (1) Montrer qu'un produit fini d'espaces métriques compacts muni de la distance produit est un espace compact.
- (2) Soit $n \in \mathbb{N}^*$. Montrer qu'un partie de \mathbb{R}^n est compacte si et seulement si elle est fermée et bornée.

Exercice 1. Soit $E = \mathbb{R}^{\mathbb{N}}$ l'espace des applications de \mathbb{N} dans \mathbb{R} . Pour tous $f, g \in E$ on pose

$$d(f,g) = \sum_{k=0}^{\infty} \frac{1}{2^k} \min(|g(k) - f(k)|, 1).$$

- (1) On admet que d est bien définie, c'est-à-dire que $d(f,g) < \infty$ pour tous $f,g \in E$. On admet aussi que d(f,g) = 0 si et seulement si f = g, et que d(f,g) = d(g,f) pour tous $f,g \in E$. Démontrer que d est une métrique sur E.
- (2) Démontrer que E est borné pour cette métrique.

- (3) Existe-t-il une norme $\| \|$ sur E telle que, pour tous $f, g \in E$, $d(f, g) = \|g f\|$? Justifier votre réponse.
- (4) Soient $f, g \in E$ et $K \in \mathbb{N}$. Démontrer que, si pour tout $k \in [0, K]$ on a $|g(k) f(k)| \le 2^{-K}$, alors $d(f, g) \le 3 \cdot 2^{-K}$.
- (5) Soient $f, g \in E$ et $K \in \mathbb{N}$. Démontrer que, si $d(f,g) \leq 2^{-2K}$, alors pour tout $k \in [0,K]$ on a $|g(k) f(k)| \leq 2^{-K}$.
- (6) Soient $(f_n)_{n\in\mathbb{N}}$ une suite dans E et $f\in E$. Démontrer que $(f_n)_{n\in\mathbb{N}}$ converge vers f dans E si et seulement si pour tout $k\in\mathbb{N}$ la suite $(f_n(k))_{n\in\mathbb{N}}$ converge vers f(k) dans \mathbb{R} .
- (7) Démontrer que (E, d) est complet.
- (8) Soit T l'application de E dans E définie par T(f)(n) = f(n+1). Démontrer que T est lipschitzienne pour la distance d.
- (9) Démontrer que (E, d) n'est pas compact.

Exercice 2. Soit (E, d) un espace métrique borné. Rappelons que, si $A \subseteq E$, alors le diamètre de A est défini par

$$diam(A) = \sup\{d(x, y) \mid x, y \in A\}.$$

Par convention le diamètre de l'ensemble vide est 0. Soit $A \subseteq E$. Parmi les assertions suivantes, démontrer celles qui sont toujours vraies et donner un contre-exemple aux autres.

- (a) $diam(A) = diam(\bar{A}),$
- (b) $diam(A) = diam(\mathring{A})$.