UNIVERSITE DE BOURGOGNE DEPARTEMENT I.E.M.

SPI/Elec TRAITEMENT NUMERIQUE DES IMAGES

Durée : 2h00 ; Documents de cours, TD et TP (année 2017) uniquement autorisés

Interdit : tout matériel disposant d'une connexion à internet (Smartphone, PC portable)

Numéro Anonymat:

Exercice N° 1 (6 points)
1) La longueur d'onde du visible se décrit comme une longueur comprise en 380 à 880 nm
Faux sans –opinion vrai
2) La teinte exprime la quantité d'énergie, et permet de distinguer le rouge du rose
Faux sans –opinion vrai
3) L'espace HLS (Hue, Luminance et Saturation) est un espace proche de la vision humaine
Faux sans –opinion vrai
4) L'espace HLS (Hue, Luminance et Saturation) est un espace non linéaire
Faux sans –opinion vrai
5) On retrouve le système soustractif des couleurs dans la télévision
Faux sans –opinion vrai
6) L'espace couleur la plus utilisée est l'espace RGV (Rouge Vert Bleu)
Faux sans –opinion vrai
7) L'œil Humain peut percevoir une quantité non négligeable de teintes différentes
10 200 400 6000
8) Le premier standard de couleur a été élaboré par la CIE (Commission Internationale de l'Eclairage) en 1964
Faux sans –opinion vrai
9) Une couleur est dite primaire si elle peut être obtenue par 3 autres couleurs de la base Faux Sans –opinion Vrai
10) Le blanc est obtenu par la soustraction de 3 couleurs primaires (Rouge, Vert, Bleu)
Faux sans –opinion vrai

Exo 2 : Segmentation Division-Fusion (8 points)

On se propose de segmenter l'image d'étude en utilisant la méthode de division-fusion.

1) Donner quelques raisons qui limitent l'utilisation de cette méthode

La division

Elle est conditionnée par un critère d'homogénéité et un prédicat.

Soit R₁ l'ensemble des régions possibles

$$E_1(R_l) = \frac{1}{card[R_l]} \sum_{l} (g(x_l) - m(R_l))^2$$
, $l = 1$L

card(R₁)= nombre de pixels de la région 1.

 $g(x_i)$ = niveau de gris du pixel x_i .

 $x_i \in R_I$

 $m(R_l)$ = valeur moyenne des niveaux de gris R_l .

 $P_1(R_1) = \text{vrai si } E(R_1) \le \text{sb}$

sinon faux

2) En vous servant du critère d'homogénéité définit par **sb=0.2**, réaliser la division de l'image Test **(figure 1)** en plusieurs régions.

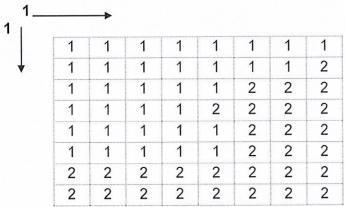
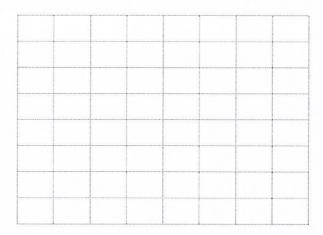
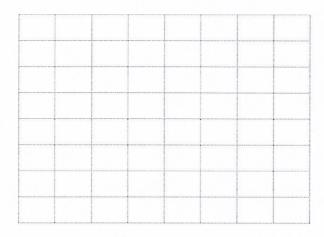
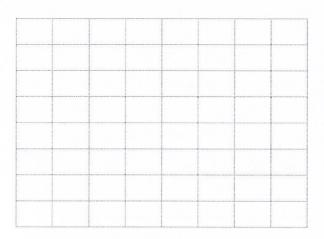



Figure 1


Réponses : La solution de la phase 1 vous est fournie

Phase 1 E(phase1) = 0.2530


Phase 2:

Phase 3:

Phase 4:

Exo 3: Segmentation contour (6 points)

L'image d'étude est l'image de la figure 2 ci-après.

1) Donner la différence entre un détecteur de contour de 1^{er} ordre et un détecteur de contour de 2^{ème} ordre, donner dans chaque cas un exemple.

2)	On décide de traiter cette image en utilisant le masque de convolution de Prewitt. Donner ce masque
	et expliquer sa différence par rapport au masque de Roberts

3) Appliquer le gradient simple au traitement de cette image, on donnera les résultats selon chaque axe $(\Delta x \text{ et } \Delta y)$ sans calculer le module

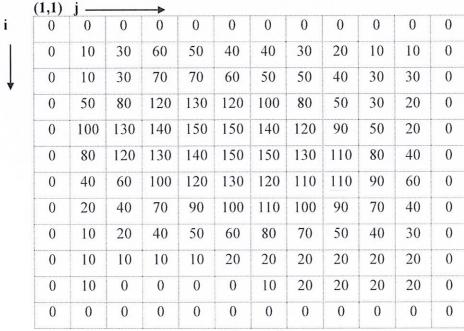
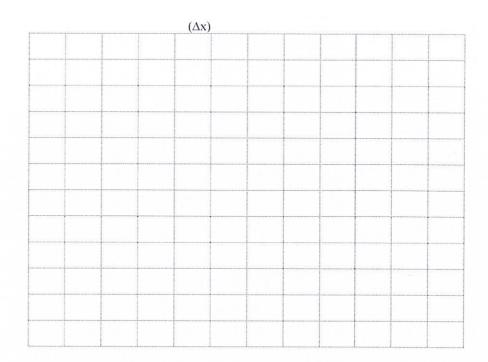
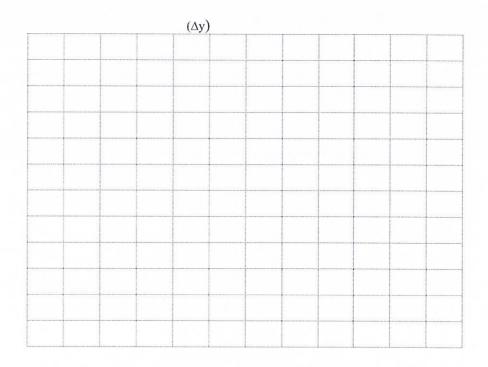




Figure 2

Le module									
		7							